A Convex Formulation for Spectral Shrunk Clustering

نویسندگان

  • Xiaojun Chang
  • Feiping Nie
  • Zhigang Ma
  • Yi Yang
  • Xiaofang Zhou
چکیده

Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Thus, applying manifold information obtained from the original space to the clustering process in a low-dimensional subspace is prone to inferior performance. Aiming to address this issue, we propose a novel convex algorithm that mines the manifold structure in the low-dimensional subspace. In addition, our unified learning process makes the manifold learning particularly tailored for the clustering. Compared with other related methods, the proposed algorithm results in more structured clustering result. To validate the efficacy of the proposed algorithm, we perform extensive experiments on several benchmark datasets in comparison with some state-of-the-art clustering approaches. The experimental results demonstrate that the proposed algorithm has quite promising clustering performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

Some Results on Convex Spectral Functions: I

In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...

متن کامل

Constrained Spectral Clustering using L1 Regularization

Constrained spectral clustering is a semi-supervised learning problem that aims at incorporating userdefined constraints in spectral clustering. Typically, there are two kinds of constraints: (i) must-link, and (ii) cannot-link. These constraints represent prior knowledge indicating whether two data objects should be in the same cluster or not; thereby aiding in clustering. In this paper, we pr...

متن کامل

Just Relax and Come Clustering! A Convexification of k-Means Clustering, Report no. LiTH-ISY-R-2992

k-means clustering is a popular approach to clustering. It is easy to implement and intuitive but has the disadvantage of being sensitive to initialization due to an underlying non-convex optimization problem. In this paper, we derive an equivalent formulation of k-means clustering. The formulation takes the form of a `0-regularized least squares problem. We then propose a novel convex, relaxed...

متن کامل

Constrained Spectral Clustering with Distance Metric Learning

Spectral clustering is a flexible clustering technique that finds data clusters in the spectral embedding space of the data. It doesn’t assume convexity of the shape of clusters, and is able to find non-linear cluster boundaries. Constrained spectral clustering aims at incorporating user-defined pairwise constraints in to spectral clustering. Typically, there are two kinds of pairwise constrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015